Operators with Singular Continuous Spectrum: Iii. Almost Periodic Schrödinger Operators

نویسندگان

  • S. Jitomirskaya
  • B. Simon
چکیده

We prove that one-dimensional Schrödinger operators with even almost periodic potential have no point spectrum for a dense Gδ in the hull. This implies purely singular continuous spectrum for the almost Mathieu equation for coupling larger than 2 and a dense Gδ in θ even if the frequency is an irrational with good Diophantine properties. §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operators with Singular Continuous Spectrum: III. Almost Periodic Schrόdinger Operators

We prove that one-dimensional Schrodinger operators with even almost periodic potential have no point spectrum for a dense Gδ in the hull. This implies purely singular continuous spectrum for the almost Mathieu equation for coupling larger than 2 and a dense Gδ in Θ even if the frequency is an irrational with good Diophantine properties.

متن کامل

Spectral Properties of a Class of Reflectionless Schrödinger Operators

We prove that one-dimensional reflectionless Schrödinger operators with spectrum a homogeneous set in the sense of Carleson, belonging to the class introduced by Sodin and Yuditskii, have purely absolutely continuous spectra. This class includes all earlier examples of reflectionless almost periodic Schrödinger operators. In addition, we construct examples of reflectionless Schrödinger operator...

متن کامل

Almost Periodic Schrödinger Operators along Interval Exchange Transformations

It is shown that Schrödinger operators, with potentials along the shift embedding of irreducible interval exchange transformations in a dense set, have pure singular continuous spectrum for Lebesgue almost all points of the interval. Such potentials are natural generalizations of the Sturmian case.

متن کامل

Measures of Fermi surfaces and absence of singular continuous spectrum for magnetic Schrödinger operators

Fermi surfaces are basic objects in solid state physics and in the spectral theory of periodic operators. We define several measures connected to Fermi surfaces and study their measure theoretic properties. From this we get absence of singular continuous spectrum and of singular continuous components in the density of states for symmetric periodic elliptic differential operators acting on vecto...

متن کامل

Singular Continuous Spectrum for Certain Quasicrystal Schrödinger Operators

We give a short introduction into the theory of one-dimensional discrete Schrödinger operators associated to quasicrystals. We then report on recent results, obtained in jont work with D. Damanik, concerning a special class of these operators viz Quasi-Sturmian operators. These results show, in particular, uniform singular continuous spectrum of Lebesgue measure zero.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002